最新五年级学生上学期知识知识点梳理(8篇)
任何一门学科的知识都需要大量的记忆和练习来巩固。知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。下面是小编给大家整理的最新五年级学生上学期知识知识点梳理,仅供参考希望能帮助到大家。
最新五年级学生上学期知识知识点梳理篇1
1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。
2、在轴对称图形中,对称的两个点到对称轴的距离相等。
3、对平移和旋转现象的初步认识:
(1)张叔叔在笔直的公路上开车,方向盘的运动是(旋转)现象。
(2)升国旗时,国旗的升降运动是(平移)现象。
(3)妈妈用拖布擦地,是(平移)现象。
(4)自行车的车轮转了一圈又一圈是(旋转)现象。
4、镜子内外的左右方向是相反的。
最新五年级学生上学期知识知识点梳理篇2
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的.周长=边长×4 C=4a
3、长方形的面积=长×宽S=ab
4、正方形的面积=边长×边长S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
11、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2
12、长方体的体积=长×宽×高公式:V = abh
13、正方体的表面积=棱长×棱长×6公式:S=6a2
14、长方体(或正方体)的体积=底面积×高公式:V = abh
最新五年级学生上学期知识知识点梳理篇3
观察物体
1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
2、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、构建空间想象力:
(1)、将两个完全一样的正方体并排放,要求想象画出以不同角度看到的样子(强调左右面是重合,故只能看见一个正方形)。
(2)、将一个正方体和圆柱体并排放,要求想象画出从不同角度看到的样子。
4、动手操作,思维拓展
用5个小正方体摆从正面看到的图形(你能摆出几种不同的方法)。(有多少种不同摆法,最少要用多少个小正方体,最多只能用多少个小正方体。)
小数乘法
一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)
知识点一:
1、计算小数加法先把小数点对齐,再把相同数位上的数相加
2、计算小数乘法末尾对齐,按整数乘法法则进行计算。
知识点二:
积中小数末尾有0的乘法。先计算出小数乘整数的乘积后,积的小数末尾出现0,要再根据小数的性质去掉小数末尾的0。如:3.60 “0”应划去
知识点三:
如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。如0.02×2=0.04
知识点四:
计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。
思考:
小数乘整数与整数乘整数有什么不同?
1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
2小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。
二、小数乘小数
知识点一:
因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。
知识点二:
小数乘法的一般计算方法:
先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:
小数乘法的验算方法
1、把因数的位置交换相乘
2、用计算器来验算
三、积的近似数
知识点一:
先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。
知识点二:
如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。如6.597保留两位为6.60
四、连乘、乘加、乘减
知识点一:
小数乘法要按照从左到右的顺序计算
知识点二:
小数的乘加运算与整数的乘加运算顺序相同。先乘法,后加法
整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
五、简便运算
整数乘法的交换律、结合律和分配律,对于小数乘法也适用
计算连乘法时可应用乘法交换律、结合律将几位整数的两个数先乘,再乘另一个数,计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。
对于不符合运算定律的算式,有些通过变形也可以应用。
乘法分配律也可以推广到相应的减法。
最新五年级学生上学期知识知识点梳理篇4
1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;
2.会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;
3.理解用字母表示数的意义和作用;
4.理解简易方程的意思及其解法;
5.在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
学习难点:
6.能正确进行乘号的简写,略写;小数乘法的计算法则;
7.小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足;
8.除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;
9.构建初步的空间想象力;
10.用字母表示数的意义和作用;
11.多边形面积的计算。
最新五年级学生上学期知识知识点梳理篇5
观察物体
1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
2、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、构建空间想象力:
(1)、将两个完全一样的正方体并排放,要求想象画出以不同角度看到的样子(强调左右面是重合,故只能看见一个正方形)。
(2)、将一个正方体和圆柱体并排放,要求想象画出从不同角度看到的样子。
4、动手操作,思维拓展
用5个小正方体摆从正面看到的图形(你能摆出几种不同的方法)。(有多少种不同摆法,最少要用多少个小正方体,最多只能用多少个小正方体。)
小数乘法
一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)
知识点一:
1、计算小数加法先把小数点对齐,再把相同数位上的数相加
2、计算小数乘法末尾对齐,按整数乘法法则进行计算。
知识点二:
积中小数末尾有0的乘法。先计算出小数乘整数的乘积后,积的小数末尾出现0,要再根据小数的性质去掉小数末尾的0。如:3.60 “0”应划去
知识点三:
如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。如0.02×2=0.04
知识点四:
计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的`末尾对齐。
思考:
小数乘整数与整数乘整数有什么不同?
1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
2小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。
二、小数乘小数
知识点一:
因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。
知识点二:
小数乘法的一般计算方法:
先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:
小数乘法的验算方法
1、把因数的位置交换相乘
2、用计算器来验算
三、积的近似数
知识点一:
先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。
知识点二:
如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。如6.597保留两位为6.60
四、连乘、乘加、乘减
知识点一:
小数乘法要按照从左到右的顺序计算
知识点二:
小数的乘加运算与整数的乘加运算顺序相同。先乘法,后加法
整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
五、简便运算
整数乘法的交换律、结合律和分配律,对于小数乘法也适用
计算连乘法时可应用乘法交换律、结合律将几位整数的两个数先乘,再乘另一个数,计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。
对于不符合运算定律的算式,有些通过变形也可以应用。
乘法分配律也可以推广到相应的减法。
数学几何形体周长面积体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽S=ab
4、正方形的面积=边长×边长S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
11、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2
12、长方体的体积=长×宽×高公式:V = abh
13、正方体的表面积=棱长×棱长×6公式:S=6a2
14、长方体(或正方体)的体积=底面积×高公式:V = abh
数学图形的运动知识点
1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。
2、在轴对称图形中,对称的两个点到对称轴的距离相等。
3、对平移和旋转现象的初步认识:
(1)张叔叔在笔直的公路上开车,方向盘的运动是(旋转)现象。
(2)升国旗时,国旗的升降运动是(平移)现象。
(3)妈妈用拖布擦地,是(平移)现象。
(4)自行车的车轮转了一圈又一圈是(旋转)现象。
4、镜子内外的左右方向是相反的。
最新五年级学生上学期知识知识点梳理篇6
列方程解应用题的方法:
(1)综合法
先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
(2)分析法
先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
列方程解应用题的范围:
小学范围内常用方程解的应用题:
(1)一般应用题;
(2)和倍、差倍问题;
(3)几何形体的周长、面积、体积计算;
(4)分数、百分数应用题;
(5)比和比例应用题。
平行四边形的面积公式:
底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah
三角形面积公式:
S△=1/2xah(a是三角形的底,h是底所对应的高)
梯形面积公式:
(1)梯形的面积公式:(上底+下底)×高÷2.
用字母表示:(a+b)×h÷2
(2)另一计算公式:中位线×高
用字母表示:l·h
(3)对角线互相垂直的梯形:对角线×对角线÷2.
最新五年级学生上学期知识知识点梳理篇7
1、公式:
长方形:周长=(长+宽)×2--【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2
面积=面积=长×宽字母公式:S=ab
正方形:周长=边长×4字母公式:C=4a
平行四边形的面积=底×高字母公式:S=ah
三角形的面积=底×高÷2--【底=面积×2÷高;高=面积×2÷底】字母公式:S=ah÷2
梯形的面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2
【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
2、平行四边形面积公式推导:
剪拼、平移
3、三角形面积公式推导:
旋转
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。
因为平行四边形面积=因为平行四边形面积=底×高,所以三角形面积=底×高÷2
4、梯形面积公式推导:
旋转
5、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形,知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
6、等底等高的平行四边形面积相等;
等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
7、长方形框架拉成平行四边形,周长不变,面积变小。
8、组合图形:转化成已学的简单图形,通过加、减进行计算。
数学0是奇数还是偶数
0是一个特殊的偶数(20__年国际数学协会规定零为偶数;我国20__年也规偶数定零为偶数)。它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。
小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了。
哥德巴赫猜想说明任何大于二的偶数都可以写为两个质数之和,但尚未有人能证明这个猜想。
小学数学必背关系表达式
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
最新五年级学生上学期知识知识点梳理篇8
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.61.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
小数除法的计算方法:
计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。
计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。
2、取近似数的`方法:
取近似数的方法有三种,①四舍五入法 ②进一法 ③去尾法
一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。
取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。
3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
4、循环小数的表示方法:
一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0.3636 1.587587
另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12.
5、有限小数:小数部分的位数是有限的小数,叫做有限小数。
6、无限小数:小数部分的位数是无限的小数,叫做无限小数。