为您提供入党申请书、读后感、检讨书、自我鉴定、思想汇报、自我评价、入党誓词、等各类知识经验文章供你学习参考。

2021人教版必修一数学集合知识点总结

崇灏 分享 时间: 加入收藏 我要投稿 点赞

如果想要提高数学成绩,可以在做数学题的过程中多研究规律。不要总是硬套公式,试着进行思维的转换,这样有助于数学思维的开发。下面是小编整理的人教版必修一数学集合知识点总结,仅供参考希望能够帮助到大家。

人教版必修一数学集合知识点总结

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:XKb1.Com

非负整数集(即自然数集)记作:N

正整数集:Nx或N+

整数集:Z

有理数集:Q

实数集:R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。AÍA

②真子集:如果AÍB,且A¹B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AÍB,BÍC,那么AÍC

④如果AÍB同时BÍA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:

有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

三、集合的运算

运算类型交集并集补集

定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

数学的学习方法

1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

数学一元二次方程知识点

(1)一元二次方程的定义

等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

注意一下几点:

①只含有一个未知数;

②未知数的最高次数是2;

③是整式方程。

(2)一元二次方程的一般形式

一般形式:

ax2+ bx + c = 0(a ≠0).

其中,ax2是二次项,a是二次项系数;

bx是一次项,b是一次项系数;c是常数项。

(3)一元二次方程的根

使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定义是解方程过程中验根的依据。

人教版必修一数学集合知识点总结相关文章:

高一数学集合知识点归纳

人教版高一数学必修一知识点精选归纳5篇

人教版高一数学必修一必考知识点总结分享五篇

最新高一数学知识点整理归纳5篇

人教版高一数学必修一重点知识点总结5篇

人教版高一数学必修一难点总结5篇

人教版高一数学知识点精选归纳5篇分享

高一年级数学必修1知识点整理

高一数学必修一知识点必背难点总结5篇

人教版高一数学知识点整理五篇

221381
领取福利

微信扫码领取福利

2021人教版必修一数学集合知识点总结

微信扫码分享