三角形的内角和数学教学设计5篇
三角形的内角和,即三个内角的和。三角形内角和定理:三角形三个内角和等于180°。用数学符号表示为:在△ABC中,∠1+∠2+∠3=180°。下面是小编为大家整理的三角形的内角和数学教学设计5篇,希望大家能有所收获!
三角形的内角和数学教学设计1
教学内容:
义务教育课程标准实验教科书__版小学数学四年级下册第42~46页
教学目标:
1、通过量、剪、拼、折等数学活动,让学生亲自实践操作,发现规律,主动推导并得出“三角形内角和是180°”的结论,会应用这一规律进行计算。
2、在操作、验证三角形内角和的过程中,体验解决问题方法的多样性,发展空间观念,提高初步的逻辑思维能力。
教学过程:
一、创设情境,导入新课
1、谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?
2、我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?我们一起去看看吧!
播放课件
详细内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是的。”一个小的锐角三角形很委屈的样子说:“是这样吗?”(它们在争论谁的内角和大。)
你知道什么是三角形的内角和吗?
通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。
3、故事中到底谁说得对呢?今天我们就来研究三角形的内角和。
【设计意图】从学生的心理、兴趣和意愿为出发点,利用故事的形式提出疑问,激发学生的学习兴趣,提高学生探索的积极性。
二、自主探究、发现规律
1、探究三角形内角和的特点
(1)量一量
师:你认为怎样能知道三角形的内角和?
生:把三角形的三个内角分别量出来,再用加法算出三角形的内角和。
学生活动(小组合作---每组准备三种不同的三角形)量角,求和,完成第43页的表格。
学生交流汇报测量结果。
师:从刚才的交流中,你发现了什么?
生:不管是锐角三角形、直角三角形还是钝角三角形,内角和都是180°。
(在量的过程中,由于误差,有的学生可能算出内角和在180°左右,这时教师要相机诱导:在测量的过程中出现一些误差是正常的,因为同学们画的角不够标准,量角器的不同,还有本身测量的原因都可能导致误差。)
师:看来量一量会出现误差,那么你还有其它的更科学的办法进行验证吗?
(2)拼一拼
学生分小组活动,教师参与学生的活动,并给予必要的指导。
学生展示交流,师:从大家的交流中,我们发现都可以把三角形的三个内角拼成一个平角,证明“三角形内角和是180°” 。
(3)折一折
小组活动,学生交流
生1:将正方形(或长方形)纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形(或长方形)的四个直角的和是360°,所以三角形的内角和就是它的一半,是180°。
生2:直角三角形的两个锐角可以折成一个直角,也就是说,在直角三角形中,两个锐角的和是90°,因此三角形内角和就是180°。
2、归纳
师:通过刚才的活动,我们得出了什么结论?
生:三角形的内角和等于180°。
3、师谈话:三个三角形争论的问题现在能解决了吗?你现在想对这三个三角形说点什么?
学生畅所欲言,对得出的规律做系统的整理。
【设计意图】动手实践,自主探索,亲身体验,是学习数学的重要方式。学生分组合作,量一量、拼一拼、折一折,通过多种感官参与比较、分析从而自主探索得出结论,得到的不仅是三角形内角和的知识,也使学生学到了怎样由已知探索未知的思维方式与方法,培养了他们主动探索的精神。
三、灵活运用,巩固练习
师:好,大家已经发现了“三角形内角和是180°”这一规律,你能应用这个规律解决一些实际的问题吗?
1、判断
钝角三角形比锐角三角形的内角和大。 ( )
锐角三角形的两个内角和小于90°。 ( )
一个三角形最少有两个锐角。 ( )
一个钝角三角形最少有一个钝角。 ( )
学生判断并说出理由。
2、自主练习第6题
练习时,先让学生独立填空,再说说自己是怎么想的,然后用量角器验证计算的结果。
小结:以后如果遇到求一个三角形内未知角的度数时,我们可以用计算的方法算一算,简单又精确。
3、游戏: 选度数,组三角形
(课件显示如下)
请选出三个角的度数来组成一个三角形
10° 18° 15° 150° 130° 72°
20° 50° 70° 35° 75°
52° 56° 54° 58° 60°
学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,并说出理由。
[设计意图]用已学到的新知解决实际数学问题,认识学数学的价值,再次体验成功,增强学习数学的兴趣。尤其是第三个练习,依据学生的年龄特征和认知水平,设计探索性和开放性的问题,注重拓宽学生的思维活动空间。
四、课堂总结、深化认识
谈话:这节课你学会了什么?解决了什么问题?是怎样解决的?
【设计意图】不仅从知识方面进行总结,还引导学生回顾发现问题、提出问题、解决问题的过程,关注学生学习过程中的情感体验。既让学生习得一种学习方法,又培养了学习兴趣。
课后反思:
本节课学生以小组为单位进行合作学习,从自己的已有经验出发,积极地进行操作、测量、计算,并对自己的结论进行思考、分析。在充分发挥学生主体作用,放手让学生开展探究的同时,教师也恰到好处的发挥了引导作用。整个探究过程学生是自主的、有积极性的,在获得数学结论的同时学习了科学探究的方法,为今后的学习打下了坚实的基础。
三角形的内角和数学教学设计2
【教学目标】
1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
【教学难点】对不同探究方法的指导和学生对规律的灵活应用。
【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。
【教学过程】
一、激趣引入。
1、猜谜语
师:同学们喜欢猜谜语吗?
生:喜欢。
师:那么,下面老师给大家出个谜语。请听谜面:
形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?
生:三角形
2、介绍三角形按角的分类
师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类
师分别出示卡片贴于黑板。
3、激发学生探知心里
师:大家会不会画三角形啊?
生:会
师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!
生:试着画
师:画出来没有?
生:没有
师:画不出来了,是吗?
生:是
师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)
二、探究新知。
1、认识三角形的内角
看看这三个字,说说看,什么是三角形的内角?
生:就是三角形里面的角。
师:三角形有几个内角啊?
生:3个。
师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)
师:你知道什么是三角形“内角和”吗?
生:三角形里面的角加起来的度数。
2、研究特殊三角形的内角和
师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?
生:算一算:90°+60°+30°=180° 90°+45°+45°=180°
师:180°也是我们学习过的什么角?
生:平角
师:从刚才两个三角形的内角和的计算中,你发现了什么?
3、研究一般三角形的内角和
师:猜一猜,其它三角形的内角和是多少度呢?
生:
4、操作、验证
师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?
要求:
(1)每4人为一个小组。
(2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?
(3)验证的方法不只一种,同学们要多动动脑子。
师:好,开始活动!
师:巡视指导
师:好!请一组汇报测量结果。
生:通过测量我们发现每个三角形的三个内角和都在180度左右。
师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。
生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。
师:好!非常好!
师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)
生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。
师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)
现在老师问同学们,三角形的内角和是多少?
生:180度。
师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。
三、解决疑问
师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?
生:没有
师:那你能用这节课的知识解释一下为什么画不出来吗?
生:两个直角是180度,没有第三个角了。
师:如果想画出有两个角是钝角的三角形你能画出来吗?
生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。
师:学会了知识,我们就要懂得去运用。
四、巩固提高。
1、填空。
(1)三角形的内角和是()度。
(2)一个三角形的两个内角分别是80°和75°,它的另一个角是()。
2、求下面各角的度数。
(1)∠1=27° ∠2=53° ∠3=()这是一个()三角形。
(2)∠1=70° ∠2=50° ∠3=()这是一个()三角形。
3、判断每组中的三个角是不是同一个三角形中的三个内角。
(1)80° 95° 5°( )
(2)60° 70° 90°( )
(3)30° 40° 50°( )
4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)
对学生进行思品教育。
5、思考延伸。
根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?
6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°
五、总结。
三角形的内角和数学教学设计3
复习目标:
1.巩固掌握三角形的特性,三角形任意两边之和大于第三边以及三角形的内角和是180º。
2.知道锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形的特点并能够辨认和区别它们。
复习过程:
一、复习三角形的特点、特性、分类、内角和
1、说一说三角形的特点
2、作锐角三角形、直角三角形、钝角三角形的高和底。谈谈注意什么问题?(强调钝角三角形高的画法)
3、三角形的稳定性。(说说生活中很多事物都用到三角形的原因是什么?)
4、给出三根小棒说说可不可以组成三角形?并说出为什么?
3.4.5 3.3.3 2.2.6 3.3.5
5、三角形的分类:注意三角形各自之间的联系及个三角形的特点。
二:解决问题
1、求三角形各个角的度数。
1)三边相等
2)等腰三角形,顶角是50度
3)有一个锐角50度,是直角三角形
(根据题目所给条件——分析——解决——汇报解题思路)
2、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是75度,顶角是多少?
观察找信息——分析——解决
3、长方形和正方形的内角和各是多少度?
三:提高题
1、能画出有两个直角或者两个钝角的三角形吗?为什么?
2、 根据三角形的内角和是180度,能求出下面的四边形和正六边形的内角和吗?
四、指导学生完成课本P127 8
五、课堂小结
六、作业: P130-131第10—12题
三角形的内角和数学教学设计4
教学内容: 三角形的特征、特性、分类、内角和。
教学目标:
1.巩固掌握三角形的特性,三角形任意两边之和大于第三边以及三角形的内角和是180o。
2.,知道锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形的特点并能够辨认和区别它们。
教学过程:
活动一:简单基础的题目。
1、 作锐角三角形、直角三角形、钝角三角形的高和底。
谈谈注意什么问题?(强调钝角三角形高的画法)
2、 三角形的稳定性。
说说生活中很多事物都用到三角形的原因是什么?
3、 给出三根小棒说说可不可以组成三角形?
3.4.5 3.3.3 2.2.6 3.3.5
为什么?
三角形的分类:注意三角形各自之间的联系及个三角形的特点。
活动二:解决问题
1、 求三角形各个角的度数。
1) 三边相等
2) 等腰三角形,顶角是50度
3) 有一个锐角50度,是直角三角形
根据题目所给条件——分析——解决——汇报解题思路
2、 爸爸给小红买了一个等腰三角形的风筝。它的一个底角是75度,顶角是多少?
观察找信息——分析——解决
3、长方形和正方形的内角和各是多少度?
活动三:提高题
1、 能画出有两个直角或者两个钝角的三角形吗?为什么?
交流——汇报
2、 根据三角形的内角和是180度,能求出下面的四边形和正六边形的内角和吗?
交流讨论——汇报
四、综合练习:课本P127 8 P130-13110、11、12、13
总复习——三角形的练习卷
复习目标:1、通过讲评练习使学生对三角形的相关概念更清楚。
2、熟练画出三角形的高和底
3、三角形按角分和按边分的分类,以及通过三角形的内角和180度来求三角形的各角,特殊三角形的求角度。
复习过程:
1、复习概念:
概念:1、由三条线段组成的图形叫做三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
3、三角形的内角和为180度
4、三角形任意两条边的和大于第三条边
2、练习讲评:
(一) 在钉子板上画指定的三角形
注意:画的时候为了准确,需要画在钉子之间
(二) 填空:
1、一个三角形有( )条边、( )个角和( )个顶点
2、三角形按角的大小来分,可分为( )、( )( |三类
3、三角形按边的长短来分,可分为( )、( )
注意:基础概念题,主要是给学生对知识做个梳理
4、5、6、题主要是根据三角形内角和是180度,来计算角度,除了方法外,还要强调细心计算。
(三) 判断:
1、2、3、4、5都为概念的延伸题,要求学生要记忆
6、7、8为多项选择,主要是让学生利用公式、概念灵活做题
(四) 画高:
注:重点也是难点,放慢速度,让学生用幻灯展示作业,大家来评一评做对了没有。
学生说一说画高的时候应该注意什么
1、 用三角板画垂线,用虚线
2、 要标上垂直符号
(五) 计算
1、 在三角形中角1=136度;角2=29度;角3=?
2、 妈妈买了个等腰三角形的风铃。它的一个底角是25度,它的顶角是多少度?
3、 在直角三角形中,一个锐角是35度,另一个锐角是多少度?
注意:强调三角形的内角和是180度
三角形的内角和数学教学设计5
学习目标:
1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
2.知道三角形两个角的度数,能求出第三个角的度数。 3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。
4.能应用三角形内角和的性质解决一些简单的问题。
教具、学具准备:
课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度,标在图中 ;一副三角板。
教具、学具准备:课件、学生准备直角三角形、锐角三角形和钝角三角形各一个、一副三角板、磁铁若干。
教学过程:
一、谈话导入
猜谜语:形状似座山,稳定性能坚
三竿首尾连,学问不简单
(打一几何图形) 师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?(学生讲学过的三角形知识。)
师:就这么简单的一个三角形我们就得出了那么多的知识,你们
说数学知识神气不神奇?
今天我们还要继续研究三角形的新知识。
二、创设情境,引出课题,以疑激思
师:什么是三角形的内角? 三角形有几个内角? 生:就是三角形内的三个角。每个三角形都有三个内角。 师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。
师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)
师:同学们,请你们给评评理:是这样吗? 生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。
生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。
生3:当然是大三角形的内角和大了。
生4:我同意第二个同学的意见,两个三角形的内角和一样大。 师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。 (板书课题:
三角形的内角和)
三、动手操作,探究问题,以动启思
1、师拿出两个三角板,问:它们是什么三角形? 生:直角三角形。
师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
(学生们能够很快求出每块三角尺的3个角的和都是180°) 师:其他三角形的内角和也是180°吗? 生A:其他三角形的内角和也是180° 生B:其他三角形的内角和不是180° 生C:不一定
2、小组合作探究:
师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。
(1)、小组合作
,讨论验证方法 (2)汇报验证方法、结果
师:谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎
样?
方法一:
生A:我们小组是用剪拼的方法,将三角形的三个角撕下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。(学生操作)
生:不管什么三角形三个角都能拼成一个平角。
师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?真会动脑筋,不用工具也行,那我们把掌声送给刚才这个小组。
方法二:
生B:我们小组是用折的方法,同样得到三角形的内角和是180度。
师:请这位同学折来给大家看看。
生:3个角折成了一个平角。
师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)
师:说得真清楚。
方法三:
学生C:测量角的度数,再加起来。(填表)
师:这位同学测量的是锐角(钝角)三角形,下面就请同学们另选一个三角形求出它的内角和。(汇报:填写结果)
问:你们发现了什么?
小结:通过测量我们发现每个三角形的三个内角和都在180度左右。
师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。
3、小结:
师:刚才同学们用量、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。
(出示大小不等的三角形判断内角和,判断前面两个三角形的对话,得出大三角形的说法是不对的。)
四、自主练习,解决问题:
师:学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)
1、 第一关:下面每组中哪三个角能围成一个三角形? (1)70。
60。
30。
90。
(2)42。
54。
58。
80。
2、第二关:庐山真面目:求三角形中一个未知角的度数。
3、第三关:解决生活实际问题。
(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?
(2)交通警示牌“让”为等边三角形,求其中一个角的度数。
4、第四关:变变变(拓展练习)
利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)
师:小组的同学讨论一下,看谁能找到最佳方法。 学生汇报,在图中画上虚线,教师课件演示。
五、课堂总结
帕斯卡法是国着名的数学家、物理学家、哲学家、科学家 ,他12岁发现“任何三角形的三个内角和是1800!
帕斯卡小的时候身体不太强壮,而父亲又认为数学对小孩子有害
且很伤脑筋,所以不敢让他接触到数学。在十二岁的时候,偶然看到父亲在读几何书。他好奇的问几何学是什么?父亲为了不想让他知道太多,只讲几何学的用处就是教人画图时能作出正确又美观的图。父亲很小心的把自己的数学书都收藏好,怕被帕斯卡擅自翻动。可是却引起了巴斯卡的兴趣,他根据父亲讲的一些简单的几何知识,自己独立研究起来。当他把发现:“任何三角形的三个内角和是一百八十度”的结果告诉他父亲时,父亲是惊喜交集,竟然哭了起来。父亲于是搬出了欧几里得的“几何原理”给巴斯卡看。巴斯卡才开始接触到数学书籍。
帕斯卡12岁发现此结论,我们同学10岁就发现了。所以只要善于用眼睛观察,动脑思考,相信未来的数学家、物理学家、科学家就在你们中间!
三角形的内角和数学教学设计相关文章:
★ 《三角形的内角和》教学设计篇
★ 小学数学三角形内角和教案优秀范文
★ 初中三角形内角和定理教学设计6篇
★ 2020精选小学数学教案
★ 小学四年级数学下册《三角形分类》教学设计范例三篇
★ 高中数学教案大全模板
★ 四年级数学下册《三角形边的关系》教案及反思
★ 最新苏教版四年级下册数学教案模板
★ 2021初三中考数学复习资料整理
★ 余弦定理初中数学教案范文